Activity 1 - The Earth in the Solar System
What makes our Earth a habitable planet?

Part 1: Where is the Earth located in the Solar System?

\rightarrow Enter the distances of the planets to the Sun and the position of the habi-table zone into the table.

Planet	Distance from the Sun in AU	Distance in the model in cm
Mercury	0,4	4
Venus	0,7	7
Earth	1,0	10
Mars	1,5	15
Jupiter	5,2	52
Saturn	9,5	95
Uranus	19,2	192
Neptune	30,1	301
Habitable zone (inner edge)	0,85	8,5

\rightarrow Place the light-yellow disc on the floor and place the planetary spheres, the habitable zone, and the gas giants at the correct distance along a line on the floor.

? Where is the Earth model located in relation to the habitable zone?

Planet	Distance from the Sun in AU	Distance in the model in cm
Mercury	0,4	4
Venus	0,7	7
Earth	1,0	10
Mars	1,5	15
Jupiter	5,2	52
Saturn	9,5	95
Uranus	19,2	192
Neptune	30,1	301
Habitable zone (inner edge)	0,85	8,5

? Now place Mars on the spot of the Earth. Discuss whether Mars would then be habitable.
Compare the mass of Mars $\left(6.4 \cdot 10^{23} \mathrm{~kg}\right)$ with that of the Earth $\left(5.9 \cdot 10^{24} \mathrm{~kg}\right)$ and consider how the density of a planet's atmosphere is related to its mass (and gravity). Think of our Moon $\left(m=7.35 \cdot 10^{22} \mathrm{~kg}\right)$. Is there an atmosphere there?

