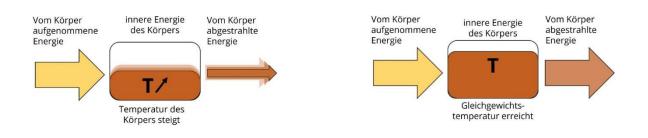



Part 1: Why is the Earth not getting hotter and hotter, even though it is constantly exposed to the Sun?

 $\rightarrow$  Measure the temperature of the Earth every 30 seconds and note the results in a table.


| Zeit s  | 0    | 20   | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  |
|---------|------|------|------|------|------|------|------|------|------|------|
| T in °C | 22,9 | 24,2 | 26,0 | 26,9 | 27,6 | 28,3 | 28,8 | 29,1 | 29,5 | 29,8 |
| Zeit s  | 200  | 220  | 240  | 260  | 280  | 300  | 320  | 340  | 360  | 380  |
| T in °C | 29,9 | 30,1 | 30,3 | 30,3 | 30,5 | 30,6 | 30,6 | 30,6 | 30,6 | 30,7 |

 $\rightarrow$  Display the results graphically in the diagram:



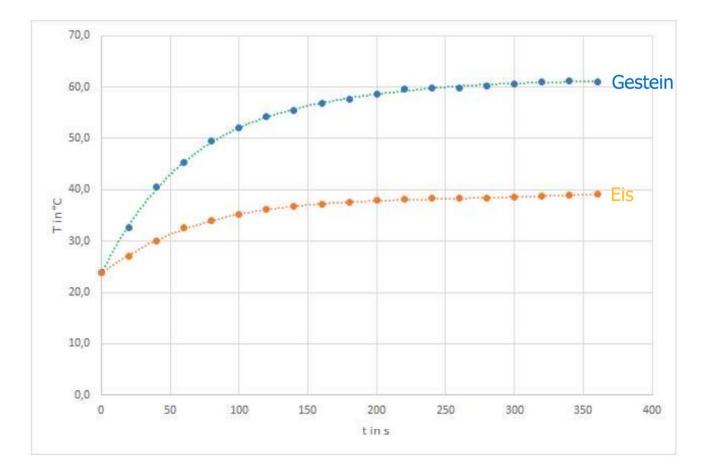
 $\rightarrow$  Discuss your results and explain why the temperature of the Earth model does not continue to rise.

Use the two figures below for your discussion and interpretation. Use the terms equilibrium temperature and radiation equilibrium.



|      |     |     |             |      |      |     |      |      |      |      |             |      |      |     | mi   |      |               | he  | for | m   | of         | the  | rm  | al   | rac  | liat | ior  | )    |     |   |
|------|-----|-----|-------------|------|------|-----|------|------|------|------|-------------|------|------|-----|------|------|---------------|-----|-----|-----|------------|------|-----|------|------|------|------|------|-----|---|
| cor  | тp  | are | <b>?, f</b> | or ( | exc  | m   | ple, | СС   | ld   | an   | d b         | laz  | ring | , h | ot i | ron  | ı).           |     |     |     |            |      |     |      |      |      |      |      |     |   |
| lf a | bc  | ody | is          | irra | idi  | ate | d, i | t b  | есс  | m    | es I        | νа   | rm   | er  | anc  | l w  | arı           | ne  | r a | nd  | thι        | IS E | emi | ts I | то   | re   | rac  | liat | ion |   |
| f th | ne  | abs | or          | bec  | l a  | nd  | rac  | liat | ed   | en   | erg         | JY ( | are  | eg  | ua   | l in | a             | cer | tai | n p | eri        | od   | of  | tin  | ne,  | it i | s in |      |     |   |
| rad  | iat | ion | e e         | quil | ibr  | iur | n a  | nd   | ha   | s re | 2 <i>ac</i> | he   | d a  | n e | qu   | ilib | riu           | m   | ter | npe | <u>era</u> | tur  | е.  |      |      |      |      |      |     |   |
| Wit  |     |     |             |      | ÷    |     |      |      | ÷ 1  |      |             |      | 1    | 1.1 |      |      |               |     |     |     | 1          |      |     |      | 1    |      |      |      |     |   |
| equ  |     |     |             | 1.1  |      |     |      |      |      |      |             |      |      |     |      |      |               |     |     |     |            | -    |     |      |      |      |      |      |     |   |
| this |     | ÷   | £           | ÷    | ÷    | 1   | ÷    |      |      |      |             | s CC | ons  | tar | 1t ( | equ  | <i>iili</i> i | bri | um  | te  | тр         | erc  | itu | re)  | , sc | ) th | at   | it c | loe | S |
| not  | СС  | nti | nu          | e to | ) ri | se  | ina  | efi  | nite | ely. |             |      |      |     |      |      |               |     |     |     |            |      |     |      |      |      |      |      |     |   |
|      |     |     |             |      |      |     |      |      |      |      |             |      |      |     |      |      |               |     |     |     |            |      |     |      |      |      |      |      |     |   |

? Venus is closer to the Sun than the Earth. What would happen to the temperature on Earth if it were moved to the location of Venus (or Mars)?

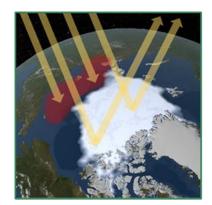

| For the Earth, ( | a new radi       | ation   | equilib  | rium   | would   | d be es | tablish   | ed, since | the pla   | net      |  |
|------------------|------------------|---------|----------|--------|---------|---------|-----------|-----------|-----------|----------|--|
| would now be     | irradiated       | more    | strong   | ly due | e to th | ne sho  | rter dist | ance. Fo  | r Venus   | s the    |  |
| difference to tl | he present       | place   | of the   | earth  | wou     | ld be e | normol    | us and th | ie temp   | erature  |  |
| of the earth we  | ould be so       | high t  | hat it v | vould  | not k   | oe hab  | itable a  | ny more   | . Since l | Mars, on |  |
| the other hand   | l, is still in l | he life | e zone   | (habi  | table   | zone),  | the ter   | nperatur  | e would   | d rise,  |  |
| but life would   | theoretical      | ly be j | oossibi  | le.    |         |         |           |           |           |          |  |
|                  |                  |         |          |        |         |         |           |           |           |          |  |
|                  |                  |         |          |        |         |         |           |           |           |          |  |

Part 2: What role do ice surfaces play in the temperature of the Earth?

 $\rightarrow$  Measure the temperature of the two paper bodies every 30 seconds and note the results in the table.

| Time in s                  |    | 0   | 20   | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 200  | 220  | 240  | 260  | 280  | 300  | 320  | 340  | 360  |
|----------------------------|----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Temperature<br>dark in °C  | 23 | 3,9 | 32,7 | 40,5 | 45,4 | 49,4 | 52,0 | 54,2 | 55,5 | 56,9 | 57,7 | 58,7 | 59,7 | 59,8 | 59,9 | 60,3 | 60,7 | 61,0 | 61,2 | 61,1 |
| Temperature<br>light in °C | 23 | 3,9 | 27,0 | 30,1 | 32,6 | 34,1 | 35,2 | 36,1 | 36,7 | 37,2 | 37,6 | 37,9 | 38,1 | 38,3 | 38,4 | 38,3 | 38,5 | 38,8 | 39,0 | 39,1 |

 $\rightarrow$  Display the results graphically in the diagram. Use different colours.




 $\rightarrow$  Discuss your results and explain the different temperature curves. Use the terms albedo, equilibrium temperature and radiation equilibrium.

| Explanation:<br>The albedo, i.e. the reflectivity, of the white paper body is higher than that of the blac<br>paper body, i.e. more radiation is reflected by the white body than by the black one.<br>Therefore, despite the same irradiation of the bodies, a different radiation equilibrium<br>arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb | Obs   |      |               |     | ····· |      |             |      |      |      |            |      |      |     |       |      |      |      |      |      |      |      |      |      |      |            |       |      |     |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------------|-----|-------|------|-------------|------|------|------|------------|------|------|-----|-------|------|------|------|------|------|------|------|------|------|------|------------|-------|------|-----|------|
| The albedo, i.e. the reflectivity, of the white paper body is higher than that of the blac<br>paper body, i.e. more radiation is reflected by the white body than by the black one.<br>Therefore, despite the same irradiation of the bodies, a different radiation equilibrium<br>arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb                 | The   | tei  | npe           | era | tu    | e    | of          | the  | bl   | ack  | p          | ape  | er b | od  | 'y ir | icre | eas  | es   | fas  | ter  | ar   | nd i | rea  | ch   | es ( | a n        | huc   | h ł  | igł | ner  |
| The albedo, i.e. the reflectivity, of the white paper body is higher than that of the blac<br>paper body, i.e. more radiation is reflected by the white body than by the black one.<br>Therefore, despite the same irradiation of the bodies, a different radiation equilibrium<br>arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb                 | fina  | l te | тр            | er  | atı   | ire  | (е          | qu   | ilib | riui | n i        | ten  | npe  | rai | ture  | e) t | ha   | n tl | ne   | wh   | ite  | ра   | pe   | r bi | ody  | <i>l</i> . |       |      |     |      |
| paper body, i.e. more radiation is reflected by the white body than by the black one.<br>Therefore, despite the same irradiation of the bodies, a different radiation equilibrium<br>arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb                                                                                                               | Expl  | lan  | atic          | on: |       |      |             |      |      |      |            |      |      |     |       |      |      |      |      |      |      |      |      |      |      |            |       |      |     |      |
| Therefore, despite the same irradiation of the bodies, a different radiation equilibrium arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb                                                                                                                                                                                                           | The   | all  | oed           | Э,  | i.e.  | th   | e I         | efl  | ect  | ivit | у,         | of   | the  | W   | hite  | e po | пре  | r b  | od   | y is | hi   | gh   | er t | ha   | n t  | ha         | t oj  | f th | e b | lack |
| arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb                                                                                                                                                                                                                                                                                                    | рар   | er l | boq           | у,  | i.e.  | m    | or          | e r  | adi  | ati  | <b>o</b> n | İS I | refl | ect | ed    | by   | the  | ? W  | hit  | e b  | od   | y t  | haı  | ٦b   | y ti | he         | bla   | ck   | one | 2.   |
| arises and thus also different equilibrium temperatures!<br>All in all, it can be concluded that lighter bodies reflect radiation better or absorb<br>radiation worse and thus reach a lower temperature than darker materials.                                                                                                                                                                                                                       | The   | ref  | ore,          | d   | esp   | oite | t t         | ne : | san  | ie i | irra       | adi  | atio | n ( | of t  | he   | bo   | die  | s, ( | a d  | iffe | rei  | nt I | ad   | iat  | ior        | e e c | quil | ibr | ium  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aris  | es ( | and           | th  | us    | al   | <b>\$</b> 0 | dif  | fer  | ent  | ес         | qui  | libr | iun | n te  | em j | per  | atı  | ire  | s!   |      |      |      |      |      |            |       |      |     |      |
| radiation worse and thus reach a lower temperature than darker materials.                                                                                                                                                                                                                                                                                                                                                                             | All i | n a  | 11 <b>, i</b> | : C | an.   | be   | СС          | nc   | lud  | ed   | th         | at I | ligh | tei | bc    | die  | es r | efl  | ect  | ra   | dia  | tio  | n Ł  | et   | ter  | or         | ab    | soi  | b   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | radi  | ati  | on            | NO  | rse   | ? a  | nd          | th   | us I | rea  | ch         | a l  | ow   | er  | ten   | npe  | ra   | tur  | e tl | har  | n d  | ark  | er   | тс   | te   | ia         | ls.   |      |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |               |     |       |      |             |      |      |      |            |      | -    |     |       |      |      |      |      |      |      |      |      |      |      |            |       |      |     |      |

**?** Discuss the effects of melting ice and glaciers on the temperature of the Earth. What are the effects of the current melting of the polar ice caps?

| Bright sur | faces  | on    | the e  | arti  | h, s | uch  | n as i | се    | an   | d si | nov  | v, r | efl | ect | th   | e ii | nci      | der  | nt I | igh  | t o  | f tł | ne s | sun  |     |
|------------|--------|-------|--------|-------|------|------|--------|-------|------|------|------|------|-----|-----|------|------|----------|------|------|------|------|------|------|------|-----|
| more stro  | ngly t | han   | , for  | еха   | тp   | ole, | wat    | er (  | or t | he   | gro  | our  | nd. | Th  | is r | efl  | ect      | ivit | y c  | of a | I SU | ırfa | ice  | is   |     |
| called alb | edo α  | (La   | tin fo | or "I | whi  | ten  | ess'   | '). F | or   | the  | e er | ntir | е е | art | h,   | α =  | <i>.</i> | 3, i | .е.  | ар   | pr   | оx.  | 30   | % 0  | f   |
| the incide | nt rac | liati | on e   | ner   | gy i | s re | flec   | tea   | ar   | nd d | loe  | s n  | ot  | cor | ntri | ibu  | te       | to   | νа   | rm   | ing  | . Т  | he   | loss | of  |
| white area | as du  | e to  | glob   | al v  | varı | mir  | ng ho  | is (  | lev  | ast  | ati  | ng   | со  | nse | qu   | en   | ces      | fo   | r tl | ne ( | ear  | th'  | S.C. | lima | te. |
|            |        |       |        |       |      |      |        |       |      |      |      |      |     |     |      |      |          |      |      |      |      |      |      |      |     |
|            |        |       |        |       |      |      |        |       |      |      |      |      |     |     |      |      |          |      |      |      |      |      |      |      |     |
|            |        |       |        |       |      |      |        |       |      |      |      |      |     |     |      |      |          |      |      |      |      |      |      |      |     |

