What influence do greenhouse gases have on the Earth's
Moritz Strähle und Cecilia Scorza temperature?

Part 1: What would be the average temperature on an earth without atmosphere?
\rightarrow Placing arrows: Place the light grey bordered arrows and the light grey labels on the sheet "Earth with-out atmosphere" to match the background text.

\rightarrow In the diagram on the next page, you will find a graphical representation of the Stefan-Boltzmann law. We will now try to get familiar with it! First complete the missing temperature values in the table (esti-mate) and then enter them into the diagram. Now read the values of the corresponding radiation in-tensity of these objects in the diagram and complete them in the table as well. Follow the example of boiling water.

Object	Temperature ${ }^{\circ} \mathrm{C}$	Intensity $\mathrm{W} / \mathrm{m}^{2}$
Boiling water	100	1100
Human body	37	520
Ice cubes	-5	300

\rightarrow If you have placed and assigned the arrows and labels correctly, you will know that, on average, the Earth absorbs $238 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$ of solar radiation and radiates this energy away again (radiation equilibrium). Now use the diagram inversely to determine the average temperature of an earth that radiates infrared radiation with this intensity and enter it in the diagram accordingly

With a radiation intensity of $238 \mathrm{~W} / \mathrm{m}$, the earth without atmosphere is at $-16^{\circ} \mathrm{C}$

? Interpret the result and compare it to reality: Is it possible to align the average temperature of the Earth you have determined with your experiences? What is the reason for this?

So, without an atmosphere, it would be very cold on Earth! This is contrary to our experience, wheremost of the year in Germany there is a pleasant or high temperature wh the exception of winter maybe

The average temperature of the earth is altogether life friendly $15^{\circ} \mathrm{C}$, which does not fit wh the the values So the atmosphere must be responsible for the big temperature differencel

The natural greenhouse effect is therefore necessary for life but its amplification by human intervention is connected to great dongers.
? Not an easy additional question: Do you have any idea why it would be much colder on an earth without an atmosphere?

\rightarrow Laying arrows: Study the background text and lay out the light grey and dark grey bordered arrows on the "Earth with atmosphere" sheet.

\rightarrow The atmosphere is thus (in addition to the Sun) a second source of radiation, which (with our assumptions) emits radiation with an intensity of $147 \mathrm{~W} / \mathrm{m}^{\wedge} 2$ towards the ground. This energy is now additionally absorbed by the ground, which radiates again with greater intensity. What is the value of this radiation intensity and what is the temperature of the ground for this? Use the diagram on the right, which is an enlargement of the diagram above.

Hint: Add up the two radiation intensities absorbed by the earth.

Part 3: How strong is the anthropogenic greenhouse effect?
? In the following example, we assume that the atmosphere absorbs slightly more radiation from the Earth: 78% instead of 76%. As a result, it heats up more and therefore also radiates with higher intensity. In this case, this would correspond to an additional $6 \mathrm{~W} / \mathrm{m}^{\wedge} 2$. What is the average temperature for the Earth with this additional energy source, that irradiates the Earth?

Info: The Intergovernmental Panel on Climate Change (IPCC) uses computer models to provide scenarios (possibilities) for the future climate. The scenarios vary from RCP 2.6 to RCP 8.5, with the figure indicating an additional radiation intensity of $2,6 \mathrm{~W} / \mathrm{m}^{\wedge} 2$ respectively $8,5 \mathrm{~W} / \mathrm{m}^{\wedge} 2$ from the atmosphere towards the Earth's surface.

$$
238 W / m^{2}+6 W / m^{2}+147 \mathrm{~W} / m^{2}=391 W / m^{2} \text { corresponds to } 15^{\circ} \mathrm{C}
$$

