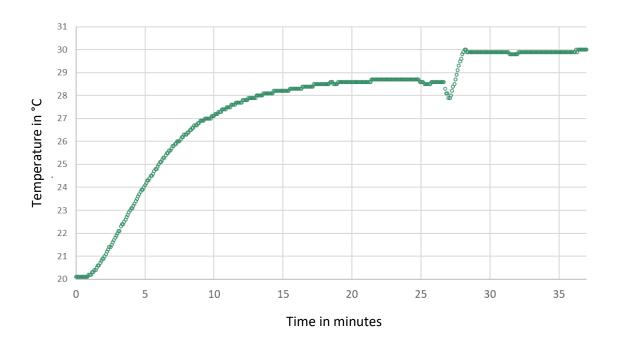
Activity 5 – The Effect of Greenhouse Gases

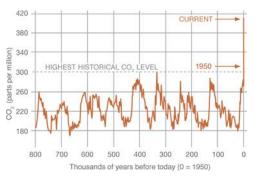
What effect do greenhouse gases have on the Earth's temperature?

Part 1: Can CO2 "intercept" invisible infrared radiation?

Switch on the infrared radiator. As the emitter heats up, read the background text carefully and match the parts of the experiment with their equivalents in reality:

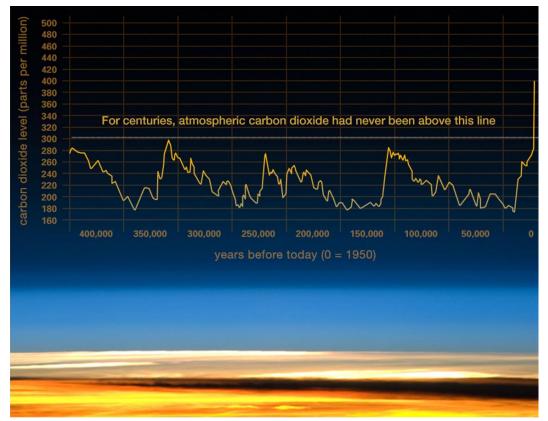


Additional greenhouse gases Earth's atmosphere with normal CO₂ concentration Earth soil

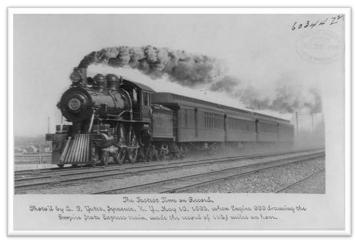

Implementation:

→ Wait until the temperature in the can no longer changes in a time frame of 30 seconds and you can as-sume that the equilibrium temperature has been reached (in the range between 30°C and 40°C). Write this down!

Shown below is a sa	mple meas	urement with	1	
equilibrium tempera	iture witho	ıt CO₂: 28,8°	Ċ	
equilibrium tempera	iture with C	`O₂: 29,6°C		
		-		
The temperature ris	es by 0,8°C.	'		



? The CO2 concentration in the atmosphere is measured in parts per million (ppm). It thus indicates how many molecules of CO2 one million molecules of dry air contain. Search the Internet for "NASA CO2" and search for the current CO2 concentration in the atmosphere. Also compare with the historical values of the last 800,000 years in the figure there.


The CO2													IICI	eus	seq	bу	' ui	mo	51	טכ	70 I	TI LI	ie	ius	1 200
years - f	rom c	ibol	ıt 0.0)28	0%	to	0.0)4:	169	6 t	odo	iy.													
(NASA, I	-ebru	ary	2021).																					
Periodic	fluct	uati	ons (an	be	se	en	in	the	hi	sto	ric	al v	valt	ies,	, w	ith	pe	rio	ds	of	hig	he	r C	02
concent	ratior	r alt	erna	tin	gи	vith	pe	rîc	ods	of	Ιοι	ver	- CC)2 (cor	icei	ntr	ati	on.						
Howeve	r, the	tre	nd in	СС)2 c	on	cer	ntr	ati	on	ove	er t	he	las	t c	ent	ur)	is /	hi	ghl	y a	ıbn	orr	nal	and
not com	· · ·			1.					-						- 1 E							: :			
extreme	ly str	ong	and	rap	oid	in¢	rea	ise	of	СС)2 I	n t	he	atr	no	sph	er	e si	nc	e ti	he	19t	h c	cen	tury.
The curi	ent c	onc	entro	itio	n is	s as	; hi	gh	as	ne	vel	r be	efo	re!											

Quelle: climate.nasa.gov/evidence/

? What has led to the observed greenhouse gas concentration since the 19th century? How is the exper-iment related to these data? Summarise your findings in two sentences.

Since th	1									-																r 1
emits e																				- T						
humans				1.1								-				-	1	-				1				
one pro	duc	t bei	ng	CO.	2, ι	vhi	ch	is e	?m	itte	ds	so t	ha	t w	е с	an	us	e e	lec	tri	city	י, f	or (exa	mp	ole.
Since C	92 ii	1 the	e at	то	spl	ner	e ir	ncre	eas	es	th	e g	ree	nh	ou	se (effe	ect	an	d t	hu	\$ C	aus	ses	the	
temper																										to
see tha	t hu	man	s aı	re a	lire	ctl	y re	esp	on.	sibl	le f	or	glo	ba	l w	arı	nin	go	or c	lin	nat	ес	cha	ng	ę.	

"The Fastest Time on Record", Foto von 1893, Quelle: Wikimedia

Karl Eduard Biermann 1847 Quelle: Preußen Kunst und Architektur, Wikimedia (11.02.2020)

Part 2: Infrared radiation is intercepted

In addition to measuring the temperature in the can, the radiation that passes through the can can be measured (transmission).

Implementation:

→ Wait until the temperature remains constant (as above) and then observe the temperature reading (and visible image, if applicable) of the thermal imaging camera as CO2 is poured into the cardboard tube.

	Δf	tor	- fil	lind	1 14/	ith	со	2	the	, in	nac	10 1	าท	the	th	orr	na	l in	nan	inc	1 ((nm	pro	ch	an	ne	c t	he	 	
							есо		÷		į																	:	 	
·····			· · · · · · · · · · · · · · · · · · ·		••••••		vh		·····						·					· · · · · · · · ·							_,			
	IN	e s	san	ie j	210	ces	s is	SI	100	vn	mo	re	spe	2010	JCL	liai	iy i	nι	ne	וסו	ΙΟν	vin	g v	iae	0:				 	
			-																										 	

https://www.youtube.com/watch?v=SeYfl45X1wo

Task:

→ Interpret the result! Note that a thermal imaging camera calculates the temperature of an object using the emitted thermal radiation (see Activity 4 - Stefan-Boltzmann law).

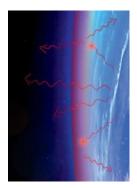
The h	eat	radî	atic	n h	ow	no l	on	ger	re	ach	ies	th	e tl	her	та	ıl ir	naţ	gin	g c	am	er	a u	nh	înd	ere	d.
The C	02	abso	rbs	the	ene	ergy	/ fr	от	th	e h	еа	t rc	idia	atic	on ¢	anc	l re	lea	ise	s it	ev	en	ly i	n b	oth	
direc	tion	s (to	the	lan	пр с	ınd	to	the	са	me	era). 7	ħи	s, r	not	all	of	the	? h	eat	ra	dic	itio	n f	ron	n
the lo	mp	reac	hes	; the	? ca	mei	a,	the	in	nag	e k	<i>ec</i>	от	es	da	rke	r a	nd	th	e te	m	oer	ati	ıre	is	
lowei	(St	efan	- <i>Bo</i>	ltzn	ıanı	1: Ic	we	r r	adi	ati	on	→	loı	vei	• te	тŗ	oer	atu	re,).						
Basic	ally	an a	spe	ct o	f th	e gi	ree	nhe	ous	e e	ffe	ct	on	ea	rth	wc	75 S	im	ulc	tec	d h	ere	•	• • • • • • • • •		
The lo	атр	emi	ts h	eat	raa	liati	ion	(re	pre	ese	nti	ng	the	e ec	artl	n);	tov	var	ds	the	e tl	ner	та	ıl ir	nag	ger
(repr	eser	nting	spc	ıce)	. Th	e tı	ibe	wi	th	the	СС	D2	(re	pre	sei	ntii	ng l	the	at	m¢	sp	he	re)	ab	sor	bs
this h	owe	ever	anc	l rac	liat	es a	iga	in.	a p	art	bo	ack														
													•••••													
			ł																							

Part 3: Why do greenhouse gases in the atmosphere heat up the Earth's surface?

Implementation:

→ The Petri dish out of glass in the following experiment acts like a very dense greenhouse gas atmosphere that absorbs almost all the infrared radiation from the Earth's surface (infrared radiator). Observe the infrared radiator from the front with the thermal imaging camera, first without the glass plate and then push the glass plate in between with the help of wooden clip (left picture). Observe for about one minute and then write down your observations.

 Without the glass plate, a bright red to white image is seen on the camera where the emitter is. With the glass plate in between, this changes rapidly, the image becomes darker and the temperature is also sharply reduced where the emitter is. After some time, however, the temperature increases again somewhat.


 The glass plate absorbs the heat radiation of the radiator and radiates heat radiation

→ Now look (directly afterwards) at the glass plate from the surface of the Earth (right picture). The effect observed here in the model experiment is a further crucial element in understanding the greenhouse effect. Explain it by putting the sentence blocks in the right order:

- 1. The greenhouse gas CO2 absorbs the heat radiation emitted from the Earth.
- 2. It is heated up by absorbing radiant energy.
- *3.* The heated gas itself now radiates infrared radiation in all directions, including towards the Earth.

again. Over time, it absorbs more energy from the radiator.

4. This additional source of radiation heats up the Earth's surface.

Rückstrahlung von IR-Strahlung durch die Atmosphäre