Energy generation in a hydropower station

- 1) Here you can see a schematic diagram of a hydropower station.
 - a) Explain the purpose and function of such a power station.

·····	 	Ţ		 		 	 	 		 	 	 	 	 			·····	 		ç	
																				1	
																				1	
·····	 	÷		 	••••••	 	 	 		 	 	 ÷	 	 	÷		÷	 	·		÷
																	÷		: I		
	 	÷	••••••	 	••••••	 	 	 		 	 	 	 	 	÷		÷	 			· • · · · · · · ·
		÷															÷		: I	1	
																				1	
·····	 	÷		 	••••••	 	 	 		 	 	 ÷	 	 	÷		÷	 			÷
																				1	
																				1	
	 	******		 ••••••		 	 	 	••••••	 	 	 ÷·····	 	 	••••••		******	 		·····	******
																				1	
																				÷	1
	 	******		 	••••••	 	 	 	******	 	 	 ••••••	 	 	••••••••••••••••••••••••••••••••••••••	******	÷	 		·····	******
																				1	
	 	÷		 ••••••••••••••••••••••••••••••••••••••		 	 	 	•	 	 		 	 				 		:	
		: · · ·															:				:
																				£	1
,	 			 		 	 	 		 	 	 	 	 				 		,	

b) List all the energy conversions which occur.

		 	 			 	 	 	 		 	 	 	 	 			 		·····
																				÷ .
																				÷
	• • • • • • • • • • • • • • • • • • • •	 	 	•••••••	••••••	 •••••••	 	 	 	÷	 	 	 	 	 	•••••••	·····	 	•••••••	÷
÷																				÷
																				1
																				÷
																				1
																				÷
																				:
	·	 	 	÷		 ÷	 	 	 	÷	 	 	 	 	 			 		÷
																				÷
																				:
	*******	 		******	••••••		 	 	 	÷••••••	 	 	 	 	 			 		÷
																				÷
			 				 							 	 					<u>.</u>
																				÷
à		 				 	 	 	 		 	 	 	 	 			 		÷

- 2) In Lake "Walchensee" there are $13 \cdot 10^8 m^3$ of water. From there, 7,3 $\cdot 10^6 m^3$ per day rush through the turbines into Lake "Kochelsee". That has a water volume of $184 \cdot 10^6 m^3$.
 - a) Write out all the given quantities and mark the ones you need to calculate the potential energy E_{pot} (position energy).

b) Explain why the given information is not sufficient to calculate the energy.

 				· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · ·		·····			·····						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 	·····		· · · · · · · · · · · · · · · · · · ·					
															-																
																	-														
	******	******	******	· · · · · · · · · · · · · · · · · · ·	·····	*******		******	*******	*******		*******	*******		******	*******			*******			*******	 	·····	*******			*******	,		/
								:						:			:				:			:				: :		: :	
			A					A															 	A							
	******		*****		*******		*****	*****		*******			********		******	********			*******			*******	 		*******			********	,		/
																	-														
															-		-						-								
			-	-			-	-		-	-	-		-	-		-			-	-		-	-		-	-				
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-				

3) The difference in height between the two lakes is 200 m. Assume that $\frac{1}{4}$ of the energy is converted into heat at the turbine. Calculate the maximum electrical energy that the Walchensee-power-station can supply per day. *Tip: If you don't remember how to convert the volume of water into mass or how to convert the unit J (joule) into the unit kWh (kilowatt hour), look at help card 1.*

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|
 |
|
 | | | | | | | | | | | | | | | | |

4) In reality, the power station produces an amount of electrical energy of approximately $300 \cdot 10^6 \, kWh$ per year. Compare the value calculated in task 3 with the actual value. Justify this difference.

Help card:

$$1J = 1Ws = 1 \cdot 10^{-3} \, kW \, s = 1 \cdot 10^{-3} \, kW \, \cdot \frac{1}{60 \cdot 60} \, h = 2,78 \cdot 10^{-7} \, kWh$$

Calculating the mass of water: $\mathbf{1} \ \mathbf{m}^3 = 1000 \ dm^3 = 1000 \ \mathbf{l} \triangleq 1000 \ \mathbf{kg} = \mathbf{1} \cdot 10^3 \ kg = \mathbf{1} \ \mathbf{t}$

Energy generation in a hydropower station – *Solutions*

- 1) Here you can see a schematic diagram of a hydropower station.
 - a) Explain the purpose and function of such a power station.

In a storage hydropower station, water is first dammed in a higher lake and then released		<i>v</i> .	lectricity	orm of ele	in the	enera	provide	ition is to	a power sta	The aim of
In a storage hydropower station, water is first dammed in a higher lake and then released										
lower lake via downnines as needed. Turkines and generators are nowered in the process	ased into a	[,] and then r	her lake	d in a high	damme	is first	, water	er station	e hydropowo	In a storage
Tower lake via downpipes as needed. Tarbines and generators are powered in the process.	cess.	ered in the p	re powe	erators ar	and ger	irbines	ded. Tu	oes as nee	∕ia downpip	lower lake

b) List all the energy conversions which occur.

Conversion of	positional energy (water in a higher lake) into kinetic energy (water in the
downpipes).	
→ Conversion	into kinetic energy by the turbine and generator
→ Conversion	into electrical energy
(additional cor	iversion to thermal energy in each conversion process).

- 2) In Lake "Walchensee" there are $13 \cdot 10^8 m^3$ of water. From there, 7,3 $\cdot 10^6 m^3$ per day rush through the turbines into Lake "Kochelsee". That has a water volume of $184 \cdot 10^6 m^3$.
 - a) Write out all the given quantities and mark the ones you need to calculate the potential energy E_{pot} (position energy).

 $V_{lake \ top} = 13 \cdot 10^8 \ m^3$ $g = 9,81 \ \frac{N}{kg}$ $V_{turbines} = 7,3 \cdot 10^6 \ m^3$ $V_{lake \ bottom} = 184 \cdot 10^6 \ m^3$.The details of the water quantities in the lakes are
unimportant. The important aspect is the amount of water
that flows through the turbines (mass of water).

b) Explain why the given information is not sufficient to calculate the energy.

T	he	hei	ght	dif	fere	enc	e h	be	twe	een	the	e la	kes	s is	mi	issiı	ng:	E_{pot}	• =	m	٠g	7 •	h.					

3) The difference in height between the two lakes is 200 m. Assume that $\frac{1}{4}$ of the energy is converted into heat at the turbine. Calculate the maximum electrical energy that the Walchensee-power-station can supply per day. *Tip: If you don't remember how to convert the volume of water into mass or how to convert the unit J (joule) into the unit kWh (kilowatt hour), look at help card 1.*

5) In reality, the power station produces an amount of electrical energy of approximately $300 \cdot 10^6 \, kWh$ per year. Compare the value calculated in task 3 with the actual value. Justify this difference.

$E_{el per day} = 300 \cdot 10^6 kWh : 365 = 822 \cdot 10^3 kWh = 0.822 \cdot 10^6 kWh \qquad \qquad$
The maximum possible yield is about four times the actual output.
The hydropower station is a demand power station and does not operate at full load all year
round. The amount of water flowing through the turbines is also limited in order to avoid affecting
the ecosystem.

Help card:

$$1J = 1Ws = 1 \cdot 10^{-3} \, kW \, s = 1 \cdot 10^{-3} \, kW \, \cdot \frac{1}{60 \cdot 60} \, h = 2,78 \cdot 10^{-7} \, kWh$$

Calculating the mass of water: $\mathbf{1} \ \mathbf{m}^3 = 1000 \ dm^3 = 1000 \ l \triangleq 1000 \ kg = 1 \cdot 10^3 \ kg = \mathbf{1} \ \mathbf{t}$

Energy generation in a hydropower station

Notes on the sources and estimations

2) bis 4)

The volume data of the lakes are referenced from this document:

https://www-docs.b-tu.de/fg-gewaesserschutz/public/projekte/uba 2/11 bayern.pdf

- Maximum flow rate $84\frac{m^3}{s} = 84 \cdot 24 \cdot 3600\frac{m^3}{d} = 7,3 \cdot 10^6\frac{m^3}{d} = 7,3 \cdot 10^9\frac{l^3}{d}$ This information can be found in the booklet on Walchensee under <u>www.uniper.energy/sites/default/files/2022-08/Brosch%C3%BCre%20Kraftwerk%20Walchensee.pdf</u> by the energy supplier Uniper, which provides quite beautiful pictures for teaching.
- The yield amount is also taken from the operator booklet.
- The height and pipe length are taken from Wikipedia.
- 4) The power station is criticised because it disrupts the natural course of the Isar. This causes animals and plants to be displaced and the Isar gets a lower water level. This shows that hydropower also has ecological consequences.