
Quizchallenge: Windenergie in Deutschland (Teil 1)

Das ist der aktuelle Energiemix von Deutschland, bei dem die Wasserkraft 0,7kWh pro Person und Tag ausmacht.

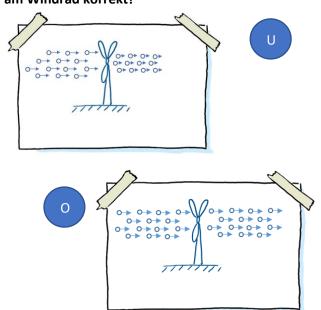
Wenn Deutschland die Wasserkraft maximal ausbauen würde, d.h. alle Kraftwerke bauen, die technisch möglich sind, so könnte man dies als Graphik darstellen.

Welche der unteren Darstellungen wäre die richtige?

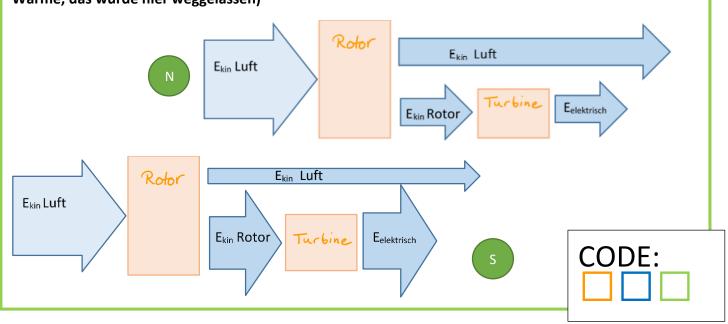
Schon 1919 bewies der deutsche Physiker Albert Betz, dass nur maximal 59% der Windenergie in elektrische Energie umgewandelt werden können. Entnimmt man dem Wind mehr kin. Energie, so wird die Luft hinter dem Windrad so langsam, dass sie ein Hindernis wäre für die nachströmende Luft. Dann funktioniert das Windrad nicht mehr optimal.

Löst die Aufgaben und tragt die Lösung bei diesem Link ein

Was ist Wind?


Betrachte das Video und den Text!

Video von TerraX bis Minute 0:55 https://kurzelinks.de/cqcu



Wind entsteht immer dann, wenn sich der Luftdruck zwischen zwei Orten unterscheidet. Die Luftteilchen, die den Wind bilden besitzen kin. Energie. Treffen sie auf das Windrad, so übertragen sie Teile dieser Energie auf den Rotor und bringen diesen zum Drehen.

Welche Graphik beschreibt die Teilchenbewegung am Windrad korrekt?

Überlege dir, welches Energieflussdiagramm korrekt ist (an Rotor und Turbine entsteht zusätzl. Wärme, das wurde hier weggelassen)

Quizchallenge: Windenergie in Deutschland (Teil 2)

Um die kinetische Energie der Luft, die das Windrad in Bewegung setzt, zu berechnen, kann man die Standardformel verwenden. Notiere dir hier die Formel:

Dazu benötigt man die Masse der Luft, die ihre Energie in einer Stunde teilweise auf das Windrad überträgt.

a) Auf ein Windrad trifft Luft der Geschwindigkeit $v_{Wind} = 6.5 \frac{m}{s}$. Nimm an, dass die Masse der Luft, die das Windrad innerhalb eines Tages in Bewegung setzt $m_{Luft} = 5,52 \cdot 10^9 kg$ beträgt. Berechne die kinetische Energie der Luft.

E_{kin Luft} = _____ J pro Tag

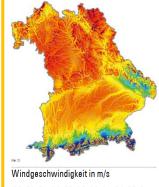
b) Gehe davon aus, dass das Windrad 50% in elektrische Energie umwandelt. Bestimme, welche elektrische Energie in kWh dabei pro Tag erzeugt wird.

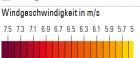
> E_{elektrisch} = kWh pro Tag (Die erste Ziffer gilt für den Code)

Bestimme nun, die Geschwindigkeit der Luft nachdem diese durchs Windrad geströmt ist

V_{Wind nach Windrad} = (Die erste Ziffer gilt für den Code)

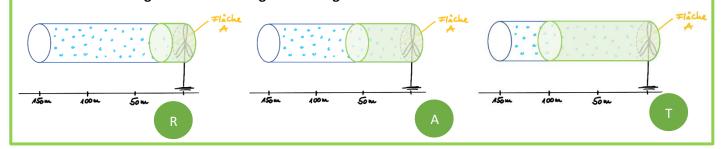
Vergleiche vwind_nach_windrad mit vwind_vorher.


Überlege dir, warum es keinen Sinn macht, zwei Windräder direkt hintereinander zu bauen.


An dieser Karte siehst du das $v_{Wind} = 6, 5 \frac{m}{s}$ ein sinnvoller Wert ist. Bestimmt die Höhe, auf die sich diese Karte bezieht.

(Die erste Ziffer gilt für den Code)

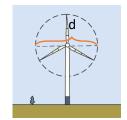
Lsg: m über Grund



Im lila Kasten wurde die Masse, die in einer Stunde durch das Windrad strömt, vorgegeben. **

Um diese zu bestimmen, müssen wir abschätzen, wie viele Luftteilchen pro Stunde das Windrad treffen. Der blaue Schlauch in der untenstehenden Grafik zeigt den Luftstrom, der durch die Rotorblätter strömt.

Die grüne Markierung zeigt die Luftteilchen, die in 10s den Rotor erreichen werden ($v_{Wind} = 6.5 \text{ m/s}$).


In welcher Zeichnung ist die Markierung korrekt angebracht?

Die Grafik im grünen Kasten hilft dir zu erkennen wovon die Masse abhängt.

Von der Windgeschwindigkeit vwind

vom Rotordurchmesser **d**

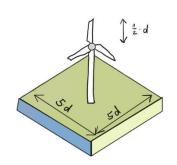
Doppelte Windgeschwindigkeit bedeutet doppelte Masse. Um welchen Faktor steigt die kin. Energie, wenn sich vwind verdoppelt? Die kin. Energie ist Mal so groß.

Faktor= 4 =>

oder von beiden

Faktor= 6 =>

Faktor= 8 =>


Quizchallenge: Windenergie in Deutschland (Teil 3)

Windenergiegewinn für Deutschland

Im roten Kasten im Teil 2 habt ihr berechnet, dass $v_{Wind_nach_Windrad}$ deutlich geringer ist als $v_{Wind_vorher.}$ => Es ist nicht effektiv, die Windräder ohne ausreichenden Abstand hintereinander zu bauen.

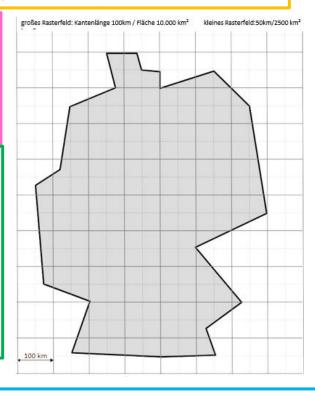
Als Faustregel gilt: Jedes Windrad mit Rotordurchmesser d beansprucht ein Quadrat mit der Kantenlänge $\mathbf{5} \cdot \boldsymbol{d}$, da die Anlage sonst nicht genug Wind erhält.

Um abzuschätzen, wieviel Energie mit Windkraft pro km^2 erzeugt werden kann betrachten wir ein mittelgroßes Windkraftwerk mit d=100m. Dann passen genau **4 Windräder auf diese Fläche**.

Berechne mit Hilfe des Ergebnisses aus dem lila Kasten aus Teil 2 die elektrische Energie in kWh, die auf einem km^2 pro Tag erzeugt werden kann.

E_{ges} = kWh pro km² pro Tag (Die erste Ziffer gilt für den Code)

Wie viel Landfläche für Windkraft genutzt wird, ist eine politische Entscheidung- z.B. könnten 25000 km² auf der Landfläche von Deutschland genutzt werden. Ist das realistisch? Betrachte den Maßstab der Karte und bestimme wie viele große Rasterfelder du schraffieren musst, um diese Fläche zu kennzeichnen. ____, ___ (Die Ziffer hinter dem Komma)


Berechne mit dem Ergebnis aus dem orangen Kasten, die Windenergie auf dieser Fläche (25 000 $\rm km^2$) in $\rm kWh$ pro Tag

E_{ges} = _____

Wie viele Windkraftanlagen braucht man dafür?

Abschluss: Nun können wir die Energie pro Person und Tag, die die Windenergie am Land (Onshore) in Deutschland bereitstellen kann berechnen. (In BRD leben ca. 80 Millionen Menschen)

E _{Onshore} = kWh pro Tag pro Person

Anmerkung: Die Windräder dieser Abschätzung sind mit d = 100m relativ klein.

Je größer die Windanlagen werden, desto mehr elektrische Leistung können sie erzeugen, aber desto größer muss der Abstand zwischen ihnen sein, aufgrund der 5d-Regel.

⇒ Berechnungen von Wissenschaftlern zeigen, dass man mit ca. 40 000 hohen Windkraftanlagen und der gleichen Landfläche (= 7% unserer Landfläche) auf etwa die gleiche Energie pro Person und pro Tag kommt, wie bei der oberen Abschätzung.

CODE:				

Windkraft aus Offshore-Anlagen

Die Energie die pro km^2 gewonnen werden kann, ist Offshore (also im Meer) doppelt so groß wie auf Land, weil der Wind sträker bläst.

Es steht eine Fläche von ca. 12 500 km² zur Verfügung

Schätze die durch Offshore Windkraft bereitgestellt Energie mithilfe des grünen Kastens ab. (Geht auch ohne Taschenrechner (3))

E _{Onshore} = _____ kWh pro Tag pro Person

E_{Onshore} + E_{Offshore} = kWh pro Tag pro Person

Vergleiche nun das Potential von Wind mit dem von Wasser und unserem Energiebedarf